Anti-Apolipoprotein A-1 auto-antibodies are active mediators of atherosclerotic plaque vulnerability.
نویسندگان
چکیده
AIMS Anti-Apolipoprotein A-1 auto-antibodies (anti-ApoA-1 IgG) represent an emerging prognostic cardiovascular marker in patients with myocardial infarction or autoimmune diseases associated with high cardiovascular risk. The potential relationship between anti-ApoA-1 IgG and plaque vulnerability remains elusive. Thus, we aimed to investigate the role of anti-ApoA-1 IgG in plaque vulnerability. METHODS AND RESULTS Potential relationship between anti-ApoA-1 IgG and features of cardiovascular vulnerability was explored both in vivo and in vitro. In vivo, we investigated anti-ApoA-1 IgG in patients with severe carotid stenosis (n = 102) and in ApoE-/- mice infused with polyclonal anti-ApoA-1 IgG. In vitro, anti-ApoA-1 IgG effects were assessed on human primary macrophages, monocytes, and neutrophils. Intraplaque collagen was decreased, while neutrophil and matrix metalloprotease (MMP)-9 content were increased in anti-ApoA-1 IgG-positive patients and anti-ApoA-1 IgG-treated mice when compared with corresponding controls. In mouse aortic roots (but not in abdominal aortas), treatment with anti-ApoA-1 IgG was associated with increased lesion size when compared with controls. In humans, serum anti-ApoA-1 IgG levels positively correlated with intraplaque macrophage, neutrophil, and MMP-9 content, and inversely with collagen. In vitro, anti-ApoA-1 IgG increased macrophage release of CCL2, CXCL8, and MMP-9, as well as neutrophil migration towards TNF-α or CXCL8. CONCLUSION These results suggest that anti-ApoA-1 IgG might be associated with increased atherosclerotic plaque vulnerability in humans and mice.
منابع مشابه
Evidence on the pathogenic role of auto-antibodies in acute cardiovascular diseases.
Atherothrombosis is the major determinant of acute ischaemic cardiovascular events, such as myocardial infarction and stroke. Inflammatory processes have been linked to all phases of atherogenesis In particular, the identification of autoimmunity mediators in the complex microenvironment of chronic inflammation has become the focus of attention in both early and advanced atherogenic processes. ...
متن کاملAuto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis.
BACKGROUND Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil extracellular traps complexed to the antimicrobial peptide Cramp/LL37 in autoimmune disea...
متن کاملSystemic atherosclerotic plaque vulnerability in patients with Coronary Artery Disease with a single Whole Body [FDG]PET-CT scan
Objective(s): Cardiovascular disease is a leading cause of morbimortality with over half cardiovascular events occurring in the asymptomatic population by traditional risk stratification. This preliminary study aimed to evaluate systemic plaque vulnerability in patients with prior Coronary Artery Disease (CAD) with a single Whole Body [FDG] PET-CT scan in terms of plaq...
متن کاملInsulin-Like Growth Factor-1 Receptor Deficiency in Macrophages Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Apolipoprotein E-Deficient Mice.
BACKGROUND We have previously shown that systemic infusion of insulin-like growth factor-1 (IGF-1) exerts anti-inflammatory and antioxidant effects and reduces atherosclerotic burden in apolipoprotein E (Apoe)-deficient mice. Monocytes/macrophages express high levels of IGF-1 receptor (IGF1R) and play a pivotal role in atherogenesis, but the potential effects of IGF-1 on their function are unkn...
متن کاملArginase‐II Induces Vascular Smooth Muscle Cell Senescence and Apoptosis Through p66Shc and p53 Independently of Its l‐Arginine Ureahydrolase Activity: Implications for Atherosclerotic Plaque Vulnerability
BACKGROUND Vascular smooth muscle cell (VSMC) senescence and apoptosis are involved in atherosclerotic plaque vulnerability. Arginase-II (Arg-II) has been shown to promote vascular dysfunction and plaque vulnerability phenotypes in mice through uncoupling of endothelial nitric oxide synthase and activation of macrophage inflammation. The function of Arg-II in VSMCs with respect to plaque vulner...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European heart journal
دوره 32 4 شماره
صفحات -
تاریخ انتشار 2011